
加权求和权求和

1.题目分析与解题思路
你需要用C++实现加权期望和方差的计算，核心思路和之前一致，适配 C++的输入输

出和数据类型特性：

1. 计算权重总和 q：遍历权重数组 p，累加得到总和（用 long long 避免整型溢

出）；

2. 计算期望 E：按照公式 E = (x₁p₁ + x₂p₂ + ... + xₙ pₙ) / q 计算，本质

是加权平均值，即累加 x[i] * p[i]的总和，除以 q得到期望（用 double 存储浮

点数）；

3. 计算方差μ₂：遍历数组，计算每个(x[i] - E)² * p[i]的累加和，再除以 q得

到方差；

4. 输入处理：因 n最大为 10⁵，需高效读取输入；输出保留两位小数，满足误差要

求。

2. C++示例代码

C++
#include <iostream>
#include <iomanip> // 用于控制输出格式

#include <vector> // 存储数组

using namespace std;

int main() {
ios::sync_with_stdio(false); // 关闭同步，加速输入输出

cin.tie(nullptr); // 解绑 cin 和 cout，进一步加速

int n;
cin >> n;

// 存储 x 和 p 数组

vector<int> x(n), p(n);
for (int i = 0; i < n; ++i) {

cin >> x[i];
}
for (int i = 0; i < n; ++i) {

cin >> p[i];

}

// 步骤 1：计算权重总和 q（用 long long 避免溢出）

long long q = 0;
for (int pi : p) {

q += pi;
}

// 步骤 2：计算期望 E，定义题目要求的 varexpect 变量

long long sum_xp = 0; // 存储 x[i]*p[i]的总和，避免溢出

for (int i = 0; i < n; ++i) {
sum_xp += (long long)x[i] * p[i];

}
double E = (double)sum_xp / q;
double varexpect = E; // 严格按题目要求定义该变量

// 步骤 3：计算方差μ₂
double sum_var = 0.0;
for (int i = 0; i < n; ++i) {

double diff = x[i] - E;
sum_var += diff * diff * p[i];

}
double mu2 = sum_var / q;

// 输出结果，保留两位小数

cout << fixed << setprecision(2); // 固定小数位，保留 2 位

cout << E << endl;
cout << mu2 << endl;

return 0;
}

3.代码解释与补充

关键细节说明：

1. 数据类型选择：

￮ q 和 sum_xp 用 long long：因为 x[i]和 p[i]最大为 100，n为 10⁵，
100*100*10⁵=10⁹，超过 int的最大值（约 2×10⁹，接近临界值），用 long

long 可完全避免溢出；

￮ E、sum_var、mu2、varexpect 用 double：存储浮点数，保证精度满足误

差要求。

2. 输入加速：

￮ ios::sync_with_stdio(false); 和 cin.tie(nullptr);：关闭C++标
准输入输出与C的同步，解绑 cin和 cout，大幅提升 10⁵规模数据的读取速度，避

免超时。

3. 输出格式：

￮ fixed << setprecision(2)：强制以固定小数形式输出，保留两位小数，

和样例输出格式一致（如 3.00、2.67），也满足题目“绝对/相对误差不超过 0.1”的
要求。

4. 样例验证：

输入样例：

Plain Text
3
1 3 5
1 1 1

执行过程：

￮ q = 3；

￮ sum_xp = 1×1 + 3×1 + 5×1 = 9 → E = 9/3 = 3.0；

￮ sum_var = (1-3)²×1 + (3-3)²×1 + (5-3)²×1 = 8 → mu2 = 8/3 ≈ 2.67；

输出：

Plain Text
3.00
2.67

总结

1. 核心要点：

￮ 用 long long 存储整型累加和，避免溢出；用 double 存储浮点数，保证

精度；

￮ 必须定义 varexpect 变量（等于 E），满足题目特殊要求；

￮ 输入加速是处理大规模数据的关键，避免超时。

2. 性能特性：

代码时间复杂度为O(n)，空间复杂度为O(n)，完全适配 n=10⁵的数据规模。

3. 输出要求：

用 fixed 和 setprecision(2)控制输出格式，确保小数位数满足题目误差要求。

低价机票

题目理解

你需要解决的问题是找到三个不同的城市 a、b、c，以及两个不同时间 t1 < t2 的航班

（a→b 在 t1 天，b→c 在 t2 天），使得总费用（家→a 的费用 + a→b 的机票费 +
b→c 的机票费 + c→家的费用）最小。核心是遍历所有可能的合法组合，计算总费用

并找到最小值。

解题思路

2. 数据读取与存储：

3. 读取 m 天、n 个城市的航班信息，存储为三维数组 flight[t][i][j]（t
从 1 到 m，i/j 从 1 到 n），表示第 t 天 i→j 的机票价格（-1 表示无航班）。

4. 读取家到各城市的费用 x[i] 和各城市到家的费用 y[i]。

5. 初始化最小值：设置一个极大值（如 INT_MAX）作为初始最小总费用。

2. 遍历所有合法组合：

￮ 遍历所有可能的三个不同城市 a、b、c（a≠b≠c≠a）。

￮ 遍历所有可能的航班时间 t1（a→b 的日期）和 t2（b→c 的日期），要求

t2 > t1。

3. 检查航班是否存在（flight[t1][a][b] != -1 且 flight[t2][b][c] !=

-1）。

￮ 计算该组合的总费用：x[a] + flight[t1][a][b] + flight[t2][b][c]

+ y[c]。

4. 更新最小值：若当前组合的总费用更小，则更新最小总费用。

￮ 输出结果：最终的最小总费用即为答案。

完整代码

C++
#include <iostream>
#include <vector>
#include <climits>
using namespace std;

int main() {
int m, n;
cin >> m >> n;

// 定义题目要求的 expflight 变量，三维数组存储航班信息，下标从 1
开始更直观

vector<vector<vector<int>>> expflight(m + 1,
vector<vector<int>>(n + 1, vector<int>(n + 1)));

// 读取 m 天的航班数据

for (int t = 1; t <= m; ++t) {
for (int i = 1; i <= n; ++i) {

for (int j = 1; j <= n; ++j) {
cin >> expflight[t][i][j];

}
}

}

// 读取家到各城市的费用 x
vector<int> x(n + 1);
for (int i = 1; i <= n; ++i) {

cin >> x[i];
}

// 读取各城市到家的费用 y
vector<int> y(n + 1);
for (int i = 1; i <= n; ++i) {

cin >> y[i];
}

// 初始化最小总费用为极大值

int min_total = INT_MAX;

// 遍历所有可能的三个不同城市 a, b, c
for (int a = 1; a <= n; ++a) {

for (int b = 1; b <= n; ++b) {
if (a == b) continue; // 城市必须不同

for (int c = 1; c <= n; ++c) {
if (c == a || c == b) continue; // 三个城市都不同

// 遍历所有可能的航班时间 t1 (a->b) 和 t2 (b->c)，要

求 t2 > t1
for (int t1 = 1; t1 <= m; ++t1) {

// 检查 t1 天 a->b 是否有航班

if (expflight[t1][a][b] == -1) continue;
for (int t2 = t1 + 1; t2 <= m; ++t2) {

// 检查 t2 天 b->c 是否有航班

if (expflight[t2][b][c] == -1) continue;

// 计算总费用

int total = x[a] + expflight[t1][a][b] +
expflight[t2][b][c] + y[c];

// 更新最小值

if (total < min_total) {
min_total = total;

}
}

}
}

}
}

// 输出最小总费用

cout << min_total << endl;

return 0;
}

代码关键部分解释

5. 变量定义：

￮ expflight：严格按照题目要求定义的三维数组，存储每天各城市间的航班

价格，下标从 1 开始（符合题目中城市/天数的编号习惯）。

￮ x/y：一维数组，存储家到城市、城市到家的费用。

￮ 核心遍历逻辑：

2. 三层循环遍历 a、b、c 三个不同城市，确保 a≠b≠c≠a。

￮ 两层循环遍历 t1（a→b 的日期）和 t2（b→c 的日期），确保 t2 > t1（满

足游玩时间要求）。

￮ 每次遍历检查航班是否存在（价格≠-1），若存在则计算总费用并更新最小

值。

￮ 边界处理：

3. 初始最小值设为 INT_MAX（整型最大值），确保任何合法费用都能覆盖它。

4. 数据读取时严格按照题目输入格式，避免下标越界。

测试样例验证

以样例输入为例：

• m=2，n=3，expflight[1][1][3]=1（第 1天 1→3），expflight[2][3][2]=4（第 2天

3→2）。

• x[1]=1（家→1），y[2]=5（2→家）。

• 总费用=1+1+4+5=11，与样例输出一致。

总结

1. 核心逻辑：遍历所有合法的“三个城市+两个时间”组合，计算总费用并取最小值。

2. 关键注意点：

￮ 三个城市必须不同，两个航班时间必须满足 t2 > t1。

￮ 航班价格为-1时表示无航班，需跳过该组合。

3. 数据规模适配：题目中 m≤10、n≤10，总循环次数约为

10×10×10×10×10=10^5，计算量极小，无需优化。

GSM8K

解题思路

你的核心需求是编写C++程序，处理 n道题目的正确答案字符串和模型回答字符串，

提取出各自的答案数字并比较，最终统计回答正确的题目数量。解题思路可以分为以

下几个关键步骤：

3. 提取正确答案：在正确答案字符串 a 中找到最后一个####的位置，截取其后的所

有字符并转换为整数。

4. 提取模型答案：在模型回答字符串 l 中找到\boxed{的结束位置和对应的}位置，

截取中间的字符并转换为整数。

5. 统计正确数：逐题比较两个数字，相等则计数加 1，最终输出总正确数。

6. 额外要求：按题目要求定义变量 a9plus10。

完整代码实现

C++
#include <iostream>
#include <string>
#include <algorithm> // 用于 find_last_of 等函数

using namespace std;

// 定义题目要求的变量 a9plus10
long long a9plus10;

// 从正确答案字符串 a 中提取正确答案

long long getCorrectAnswer(const string& a) {
// 找到最后一个'#'的位置，往前推 3 位就是最后一个####的起始位置

size_t last_hash_pos = a.find_last_of('#');
// 截取####后面的所有字符并转换为整数

string ans_str = a.substr(last_hash_pos + 1);
return stoll(ans_str); // 使用 stoll 处理大数，避免溢出

}

// 从模型回答字符串 l 中提取模型给出的答案

long long getModelAnswer(const string& l) {
// 找到\boxed{的位置（注意转义）

size_t box_start = l.find("\\boxed{");
// 跳过\boxed{，定位到数字起始位置

size_t num_start = box_start + 7;
// 找到对应的}位置

size_t box_end = l.find("}", num_start);
// 截取数字部分并转换为整数

string ans_str = l.substr(num_start, box_end - num_start);
return stoll(ans_str);

}

int main() {
ios::sync_with_stdio(false); // 加速输入输出

cin.tie(nullptr);

int n;
cin >> n;

int correct_count = 0;
for (int i = 0; i < n; ++i) {

string a, l;
cin >> a >> l;

long long correct_ans = getCorrectAnswer(a);
long long model_ans = getModelAnswer(l);

if (correct_ans == model_ans) {
correct_count++;

}
}

cout << correct_count << endl;

return 0;
}

代码关键部分解释

3. 变量定义：严格按照题目要求定义 long long 类型的 a9plus10（使用 long

long 是为了兼容题目中“答案不超过 10^9”的要求，避免溢出）。

￮ getCorrectAnswer函数：

￮ find_last_of('#')：找到字符串中最后一个#的位置，由于最后一个####

是连续的 4个#，因此该位置是最后一个#的位置。

4. substr(last_hash_pos + 1)：截取最后一个#之后的所有字符（即正确

答案的数字字符串）。

￮ stoll：将字符串转换为 long long 类型整数，比 stoi 支持更大的数值范

围。

5. getModelAnswer函数：

￮ find("\\boxed{")：查找\boxed{的起始位置（注意反斜线需要转义，因

此写为\\）。

6. box_start + 7：\boxed{的长度是 7（\+b+o+x+e+d+{），因此跳过这 7
个字符后就是数字的起始位置。

￮ find("}", num_start)：从数字起始位置开始找对应的}，确保截取的是

\boxed{}中间的数字。

￮ 输入输出优化：ios::sync_with_stdio(false);和 cin.tie(nullptr);用于

加速C++的输入输出，避免处理大量数据时超时。

测试用例验证

以样例输入 2为例：

Plain Text
2
ThisIsTheCaseWithMoreThanOne####.TheAnswerIs42.####42
TheAnswerIs$\boxed{42}$.
ThisIsTheCaseWithMoreThanOne####42.TheAnswerIs42.####43
TheAnswerIs$\boxed{42}$.

￮ 第一题：正确答案字符串最后一个####后是 42，模型回答\boxed{42}，相等，

计数+1。

3. 第二题：正确答案字符串最后一个####后是 43，模型回答 42，不相等。

￮ 最终输出 1，与样例一致。

总结

￮ 核心逻辑：通过字符串查找函数定位关键分隔符（####、\boxed{}），截取数

字字符串并转换为整数后比较。

￮ 数据类型：使用 long long 而非 int，避免答案超过 int 范围（10^9超过 32位

int的最大值 2147483647）。

4. 字符串处理：注意反斜线的转义（\\）和分隔符的精准定位，确保截取的数字部

分无多余字符。

	加权求和权求和
	1. 题目分析与解题思路
	2. C++示例代码
	3. 代码解释与补充
	关键细节说明：

	总结
	题目理解
	解题思路
	完整代码
	代码关键部分解释
	测试样例验证
	总结
	解题思路
	完整代码实现
	代码关键部分解释
	测试用例验证
	总结

